Tugas 3: Aplikasi Sensor Optik

Rangkaian Lampu dan Tirai Otomatis

 



 

1. Tujuan[kembali]

1.1 Memahami cara kerja sensor optik

1.2 Mendesain sebuah rangkaian aplikasi sonsor optik

1.3 Menjelaskan cara kerja rangkaian aplikasi sensor optik

 

2. Alat dan Bahan[kembali]

2.1 Alat

1. ) Power Suplai

Power suplai berfungsi sebagai penghasil tegangan pada rangkaian. Power suplai berupa alternator dan baterai.

 

2. ) Voltmeter

Voltmeter berfungsi untuk mengamati tegangan pada rangkaian.

DC Voltmeter - 1002787 - PeakTech - U11811 - Hand-held Analog Measuring  Instruments - 3B Scientific
 

2.2 Bahan

1. ) Phototransistor

Phototransistor berfungsi sebagai sensor untuk membuka dan menutup arus pada lampu dan motor pembuka tirai.

 

5mm Water-clear Phototransistor – Solarbotics Ltd.

2. ) Touchpad

Touchpad berfungsi sebagai saklar untuk mengaktifkan phototransistor dan motor penutup tirai.


3. ) Transistor 2N2907 dan 2N1711

Berfungsi sebagai saklar untuk mengaktifkan relay.

 

4. ) Relay

Berfungsi sebagai saklar penghubung power suplai pada komponen lainnya.


5. ) Resistor 10k ohm

Berfungsi sebagai pengatur arus dalam rangkaian.


6. ) Dioda

Berfungsi sebagai penyearah arus.

7. ) Motor dan Lampu

Sebagai output dari rangkaian.

 


3. Dasar Teori[kembali]

3.1 Phototransistor

Phototransistors adalah perangkat photojunction mirip dengan transistor kecuali bahwa sinyal yang diperkuat adalah pasangan muatan yang dihasilkan oleh input optik. Seperti halnya transistor, phototransistors dapat memiliki gain tinggi. Fototransistor dapat dibuat pada silikon menggunakan junction p-dan n-type atau dapat menjadi heterostructures. Gambar 56.8 menunjukkan sketsa struktur phototransistor bipolar sederhana, yang pada dasarnya sama dengan transistor bipolar sederhana. Perbedaan utama adalah persimpangan basis-kolektor yang lebih besar, yang merupakan daerah peka cahaya. Hal ini menghasilkan kapasitansi junction yang lebih besar dan, meskipun perangkat memiliki gain, kapasitansi memberikan respon frekuensi phototransistors lebih rendah daripada dioda.
 




GAMBAR 56.8 Representasi skematik dari phototransistor bipolar sederhana.
Perhatikan bahwa phototransistor memiliki titik p-n yang besar
wilayah yang merupakan bagian fotosensitif dari perangkat

Menggunakan teknologi transistor film tipis (TFT) yang dikembangkan untuk display panel datar, array besar phototransistors dapat dibuat pada silikon amorphous untuk membentuk perangkat pencitraan yang dapat digunakan di tempat teknologi pencitraan lain seperti tabung vidicon atau bahkan film. Contohnya adalah detektor luas (ratusan sentimeter persegi) yang diselidiki untuk digunakan dalam radiografi medis dengan menggabungkan susunan TFT dengan layar fosfor radiografi [4] atau digabungkan ke film semikonduktor [5].

 


Struktur Phototransistor


Photo Transistor dirancang khusus untuk aplikasi pendeteksian cahaya sehingga memiliki Wilayah Basis dan Kolektor yang lebih besar dibanding dengan Transistor normal umumnya. Bahan Dasar Photo Transistor pada awalnya terbuat dari bahan semikonduktor seperti Silikon dan Germanium yang membentuk struktur Homo-junction.
Namun seiring dengan perkembangannya, Photo Transistor saat ini lebih banyak menggunakan bahan semikonduktor seperti Galium Arsenide yang tergolong dalam kelompok Semikonduktor III-V sehingga membentuk struktur Hetero-junction yang memberikan efisiensi konversi lebih tinggi. Yang dimaksud dengan Hetero-junction atau Heterostructure adalah Struktur yang menggunakan bahan yang berbeda pada kedua sisi persimpangan PN.



Photo Transistor pada umumnya dikemas dalam bentuk transparan pada area dimana Photo Transistor tersebut menerima cahaya.

Bentuk dan Simbol Phototransistor

Photo Transistor pada umumnya dikemas dalam bentuk transparan pada area dimana Photo Transistor tersebut menerima cahaya.   Berikut ini adalah bentuk dan simbol Photo Transistor (Transistor Foto).
 

 

Prinsip Kerja Photo Transistor

Cara kerja Photo Transistor atau Transistor Foto hampir sama dengan Transistor normal pada umumnya, dimana arus pada Basis Transistor dikalikan untuk memberikan arus pada Kolektor. Namun khusus untuk Photo Transistor, arus Basis dikendalikan oleh jumlah cahaya atau inframerah yang diterimanya. Oleh karena itu, pada umumnya secara fisik Photo Transistor hanya memiliki dua kaki yaitu Kolektor dan Emitor sedangkan terminal Basisnya berbentuk lensa yang berfungsi sebagai sensor pendeteksi cahaya.
Pada prinsipnya, apabila Terminal Basis pada Photo Transistor menerima intensitas cahaya yang tinggi, maka arus yang mengalir dari Kolektor ke Emitor akan semakin besar. untuk lebih jelaskan, lihat di pembuaatan simulasi rangkaian sederhana dibawah.

Kelebihan dan Kelemahan Phototransistor

Meskipun Phototransistor memiliki berbagai kelebihan, namun bukan juga tanpa kelemahan. Berikut ini adalah beberapa Kelebihan dan kelemahan Phototransistor :

Kelebihan Phototransistor

1. Photo Transistor menghasilkan arus yang lebih tinggi jika dibandingkan dengan Photo Diode. 
2. Photo Transistor relatif lebih murah, lebih sederhana dan lebih kecil sehingga mudah untuk diintegrasikan ke berbagai rangkaian elektronika. 
3. Photo Transistor memiliki respon yang cepat dan mampu menghasilkan Output yang hampir mendekati instan. 
4. Photo Transistor dapat menghasilkan Tegangan, sedangkan Photoresistor tidak bisa.

Kelemahan Phototransistor

1. Phototransistor yang terbuat dari Silikon tidak dapat menangani tegangan yang melebihi 1000Volt 
2. Phototransistor sangat rentan terhadap lonjakan listrik yang mendadak (electric surge). 
3. Phototransistor tidak memungkin elektron bergerak sebebas perangkat lainnya (contoh: Tabung Elektron).

3.2 Touchpad

Touchpad adalah sebuah perangkat keras yang masuk dalam kategori perangkat input, Touchpad terdiri dari papan dengan permukaan yang dilapisi dengan sensor khusus yang mampu untuk mendeteksi gerakan jari, gerakan jari ini nantinya akan direkam oleh sensor pada Touchpad.

 

3.3 Transistor 2N2907 dan 2N1711

Karakteristik dasar dari transistor ini adalah dapat bertindak sebagai isolator dan konduktor dengan mengatur pemberian tegangan yang kecil. Karakteristik transistor yang seperti ini memungkinkan transistor dapat digunakan sebagai saklar (swicthing) maupun sebagai penguat.

Dengan metode pengaturan penerapan tegangan pada basis transistor, kita bisa mengkondisikan transistor pada tiga keadaan (wilayah) yang berbeda :
  • kondisi Aktif , Transistor berfungsi sebagai penguat dengan Ic = β * Ib
  • Saturasi , Transistor beroperasi secara terhubung penuh sebagai saklar tertutup dengan Ic = I
  • Cutt Off , Transistor dalam keadaan Off sebagai saklar terbuka dengan Ic = 0
Transistor bipolar terdiri dari dua jenis yang berbeda berdasarkan penyusunan dua buah dioda di dalamnya. Yaitu jenis PNP dan jenis NPN. Sementara konstruksi dari transistor memiliki tiga buah terminal dengan nama yang berbeda : basis (B), emitor (E) dan kolektor (C).

Prinsip dasar dari kerja transistor adalah mengendalikan laju aliran arus listrik yang mengalir melalui kaki emitor dan koleketor dengan memasukan bias tegangan kecil pada basis. Meskipun arus bias kecil namun kita bisa mengendalikan aliran arus yang besar pada kolektor dan emitor. Cara kerja transistor seperti ini layaknya sebuah kran / saklar yang mengatur aliran arus listrik.

Prinsip kerja seperti ini berlaku untuk kedua jenis transistor yang berbeda baik PNP maupun NPN. Perbedaannya terletak pada pemberian bias pada basis transistor masing masing. Dimana bias basis untuk transistor PNP adalah negatif, sementara untuk transistor NPN adalah positif.

  Simbol transistor bipolar ditunjukkan pada gambar diatas. Perbedaan simbol dari keduanya terletak pada arah panah yang menunjukkan kaki emitor. Dimana untuk transistor jenis NPN, arah panah menuju keluar yang berarti aliran arus dari kolektor menuju ke emitor. Sedangkan transistor jenis PNP ditunjukkan dengan arah panah masuk ke dalam yang berarti aliran arus dari emitor menuju kolektor.

Konfigurasi Transistor Pada Rangkaian 

Seperti kita ketahui, transistor memiliki tiga buah terminal yang berbeda. Sehingga terdapat tiga macam konfigurasi pemasangan transistor pada rangkaian elektronika. Dimana salah satu terminal transitor akan terhubung dengan ground atau dibumikan.
Setiap jenis konfigurasi transistor pada rangkaian tersebut mempunyai karakteristik yang berbeda terhadap respon arus yang diberikan kepadanya. Ketiga jenis konfigurasi tersebut adalah :
  1. Common Base 
  2. Common Emitter
  3. Common Collector

3.4 Relay

 Relay adalah Saklar (Switch) yang dioperasikan secara listrik dan merupakan komponen Electromechanical (Elektromekanikal) yang terdiri dari 2 bagian utama yakni Elektromagnet (Coil) dan Mekanikal (seperangkat Kontak Saklar/Switch). Relay menggunakan Prinsip Elektromagnetik untuk menggerakkan Kontak Saklar sehingga dengan arus listrik yang kecil (low power) dapat menghantarkan listrik yang bertegangan lebih tinggi. Sebagai contoh, dengan Relay yang menggunakan Elektromagnet 5V dan 50 mA mampu menggerakan Armature Relay (yang berfungsi sebagai saklarnya) untuk menghantarkan listrik 220V 2A.

Pada dasarnya, Relay terdiri dari 4 komponen dasar  yaitu :

  1. Electromagnet (Coil)
  2. Armature
  3. Switch Contact Point (Saklar)
  4. Spring

Berikut ini merupakan gambar dari bagian-bagian Relay :Struktur dasar Relay

Kontak Poin (Contact Point) Relay terdiri dari 2 jenis yaitu :

  • Normally Close (NC) yaitu kondisi awal sebelum diaktifkan akan selalu berada di posisi CLOSE (tertutup)
  • Normally Open (NO) yaitu kondisi awal sebelum diaktifkan akan selalu berada di posisi OPEN (terbuka)

 

3.5 Resistor 10k ohm

Resistor merupakan salah satu komponen yang paling sering ditemukan dalam Rangkaian Elektronika. Hampir setiap peralatan Elektronika menggunakannya. Pada dasarnya Resistor adalah komponen Elektronika Pasif yang memiliki nilai resistansi atau hambatan tertentu yang berfungsi untuk membatasi dan mengatur arus listrik dalam suatu rangkaian Elektronika. Resistor atau dalam bahasa Indonesia sering disebut dengan Hambatan atau Tahanan dan biasanya disingkat dengan Huruf “R”. Satuan Hambatan atau Resistansi Resistor adalah OHM (Ω). Sebutan “OHM” ini diambil dari nama penemunya yaitu Georg Simon Ohm yang juga merupakan seorang Fisikawan Jerman.

Fungsi-fungsi Resistor di dalam Rangkaian Elektronika diantaranya adalah sebagai berikut :

  • Sebagai Pembatas Arus listrik
  • Sebagai Pengatur Arus listrik
  • Sebagai Pembagi Tegangan listrik
  • Sebagai Penurun Tegangan listrik

 Untuk menghitung nilai resistansi resistor:

  • Untuk resistor 4 gelang warna, warna 1, 2, dan 3 dituliskan langsung nilainya. Warna 4 adalah toleransi.
  • Untuk resistor 5 gelang warna, warna 1, 2, 3, dan 4 dituliskan langsung nilainya. Warna 5 adalah toleransi.

3.6 Dioda

Dioda (Diode) adalah Komponen Elektronika Aktif yang terbuat dari bahan semikonduktor dan mempunyai fungsi untuk menghantarkan arus listrik ke satu arah tetapi menghambat arus listrik dari arah sebaliknya. Oleh karena itu, Dioda sering dipergunakan sebagai penyearah dalam Rangkaian Elektronika. Dioda pada umumnya mempunyai 2 Elektroda (terminal) yaitu Anoda (+) dan Katoda (-) dan memiliki prinsip kerja yang berdasarkan teknologi pertemuan p-n semikonduktor yaitu dapat mengalirkan arus dari sisi tipe-p (Anoda) menuju ke sisi tipe-n (Katoda) tetapi tidak dapat mengalirkan arus ke arah sebaliknya.

Berdasarkan Fungsi Dioda, Dioda dapat dibagi menjadi beberapa Jenis, diantaranya adalah :

  • Dioda Penyearah (Dioda Biasa atau Dioda Bridge) yang berfungsi sebagai penyearah arus AC ke arus DC.
  • Dioda Zener yang berfungsi sebagai pengaman rangkaian dan juga sebagai penstabil tegangan.
  • Dioda LED yang berfungsi sebagai lampu Indikator ataupun lampu penerangan
  • Dioda Photo yang berfungsi sebagai sensor cahaya
  • Dioda Schottky yang berfungsi sebagai Pengendali

Cara Mengukur Dioda dengan Multimeter Analog

  1. Aturkan Posisi Saklar pada Posisi OHM (Ω) x1k atau x100
  2. Hubungkan Probe Merah pada Terminal Katoda (tanda gelang)
  3. Hubungkan Probe Hitam pada Terminal Anoda.
  4. Baca hasil Pengukuran di Display Multimeter
  5. Jarum pada Display Multimeter harus bergerak ke kanan
  6. Balikan Probe Merah ke Terminal Anoda dan Probe Hitam pada Terminal Katoda (tanda gelang).
  7. Baca hasil Pengukuran di Display Multimeter
  8. Jarum harus tidak bergerak.
    **Jika Jarum bergerak, maka Dioda tersebut berkemungkinan sudah rusak.

Cara Mengukur Dioda dengan Multimeter Analog


3.7 Motor dan Lampu

Motor Listrik DC atau DC Motor adalah suatu perangkat yang mengubah energi listrik menjadi energi kinetik atau gerakan (motion). Motor DC ini juga dapat disebut sebagai Motor Arus Searah. Seperti namanya, DC Motor memiliki dua terminal dan memerlukan tegangan arus searah atau DC (Direct Current) untuk dapat menggerakannya. Motor Listrik DC ini biasanya digunakan pada perangkat-perangkat Elektronik dan listrik yang menggunakan sumber listrik DC seperti Vibrator Ponsel, Kipas DC dan Bor Listrik DC.

Pengertian Motor DC dan Prinsip Kerjanya - Teknik Elektronika

Lampu pijar adalah sumber cahaya buatan yang dihasilkan melalui penyaluran arus listrik melalui filamen yang kemudian memanas dan menghasilkan cahaya. Kaca yang menyelubungi filamen panas tersebut menghalangi udara untuk berhubungan dengannya sehingga filamen tidak akan langsung rusak akibat teroksidasi.

4. Percobaan[kembali]

4.1 Prosedur

1. ) Rangkailah komponen-komponen tersebut seperti pada gambar.

2. ) Touchpad dalam keadaan aktif dan phototransistor berada pada siang hari. Amati voltmeter dan output dari rangkaian tersebut.

3. ) Touchpad dalam keadaan tidak aktif dan phototransistor berada pada malam hari. Amati voltmeter dan output dari rangkaian tersebut.

 

4.2 Gambar Rangkaian[kembali]
 Prinsip kerja:

1. ) Saat Siang Hari

Saat saklar di sentuh Transistor 1,2, dan 3 akan aktif karena tegangan basis nya >0.7V. Akibatnya relay aktif dan medan magnetnya menarik saklar ke kanan. Arus mengalir ke phototransistor yang terkena cahaya menghasilkan tegangan emitor yang masuk ke transistor 4. Tegangan basis transistor 4 >0.7V, Transistor 4 aktif dan arus mengalir ke relay dan relay aktif. Medan magnet menarik saklar ke kanan sehingga lampu rumah mati dan tirai akan terbuka secara otomatis oleh motor dc.

2. ) Saat Malam Hari 

Saat saklar dilepas, transistor 1,2, dan 3 tidak aktif sehingga medan magnet relay menarik saklar ke kiri. Motor aktif untuk menutup tirai. Karena phototransistor tidak aktif, tegangan basis transistor 4 <0.7V sehingga tidak aktif dan medan magnet relay menarik saklar ke kiri sehingg lampu kembali hidup. 

4.3 Video Simulasi[kembali]


 

4.4 Download File[kembali]

[HTML]

[Rangkaian]

[Video]

[Datasheet]

[Library]

[Pergi ke tugas 4]

Tidak ada komentar:

Posting Komentar